师资力量

TEACHER FORCE

客座教授 / VISITING PROFESSOR
当前位置: 网站首页 > 师资力量
Christian Dieter Schunn
发布时间:2023-11-02 11:19:36 点击数:
  •       

    Christian Dieter Schunn

          


         

    美国

          

    博士

          

    客座教授

          

    教授

    任教时间

    2019年-至今

    320

     

    个人简介

    Christian Dieter Schunn主修专业心理学、辅修专业数学与计算机,1995年卡内基梅隆大学获得博士学位1998年博士后出站。现任匹兹堡大学 心理学院教授学习与发展研究中心(LRDC)高级科学家实验室主任https://www.lrdc.pitt.edu/schunn/多个科学学会(AAAS, APA, APS)会也是国际教育设计与发展学会会和执行委员会委员。曾任职于美国两个家工程院委员会K-12工程教育和K-12工程教育标准委员会2019年起,受聘为东北师范大学中国赴日本国留学生预备学校(教育部出国留学人员培训部)客座教授。

    主要研究领域为心理学、学习科学与政策智能系统。累计获得8千万美元的联邦基金负责众多科学、数学、工程、技术和写作教育方面的研究项目。获得众多学科奖项,研究成果丰硕。其研发的基于技术支持的Peerceptiv写作同伴互评系统已经得到世界范围教育领域的广泛推广和应用。

    目前的研究兴趣包括STEM推理(特别聚焦实践科学家和工程师)和STEM学习(开发和研究科学与工程或科学与数学的整合)、复杂学习的神经科学研究(科学和数学)、写作同伴互动教学及学习投入、科学教育改革大学教育与学习基于学科的教育研究教育改革与成就、科学干预动机提升研究等。

     

     

    主持基金项目 (共52项)

    正在进行的项目五项:

    1. Effective, Coherent, and Equitable Implementation of Go Math! In El Pason Region 19. Bill & Melinda Gates Foundation. CoPI with J. Dostilio, R. Correnti, B. Strawhun, L. Speranzo. $3,470,700.

    2. Developing a Context-Integrated Mindset/Belonging Intervention to Eliminate Demographic-based Underperformance in Challenging Large Lecture Undergraduate Courses. Institute of Education Sciences. CoPI with K. Binning, L. DeAngelo, E. McGreevy, R. Toutkoushian, $1,999,657.

    3. Course-based Adaptations of an Ecological Belonging Intervention to Transform Engineering Representation at Scale. National Science Foundation. DUE-2111114. CoPI with K. Binning, L. DeAngelo, E. McGreevy, A. Godwin, $2,202,844.

    4. University of Pittsburgh/Institute for Learning Network for School Improvement (9th Grade On Track). Bill & Melinda Gates Foundation. CoPI with T. Petrosky, J. Russell, D Thompson-Dorsey, R. Apodaca, & S. DeMartino. $8,224,070.

    5. Teacher Learning to Enact Productive Discussions in Mathematics and Literacy. James S. McDonnell Foundation. Co-PI with M. K. Stein, J. Russell, R. Correnti, & L. Matsumura. $2,499,651

     

    期刊论文 覆盖基于网络的同伴互动、投入与学习、STEM学习、STEM推理四个领域

    基于网络的同伴互动

    Zhang, Y., & Schunn, C. D. (In press). Self-regulation of peer feedback quality aspects through different dimensions of experience within prior peer feedback assignments. Contemporary Educational Psychology.

    Zong, Z., & Schunn, C. D. (In press). Does matching peers at finer-grained levels of prior performance enhance gains in task performance from peer review? International Journal of Computer-Supported Collaborative Learning.

    Zong, Z., Schunn, C. D., & Wang, Y. (In press). When do students provide more peer feedback? The roles of performance and prior feedback experiences. Instructional Science.  

    Dong, Z., Gao, Y., & Schunn, C. D. (2023). Assessing students’ peer feedback literacy in writing: Scale development and validation. Assessment and Evaluation in Higher Education. 10.1080/02602938.2023.2175781

    Yu, Q. & Schunn, C. D. (2023). Understanding the what and when of peer feedback benefits for performance and transfer. Computers in Human Behavior, 147, 107857. 10.1016/j.chb.2023.107857

    Zhang, F., Schunn, C., Chen, S., Li, W., & Li, R. (2023). EFL student engagement with giving peer feedback in academic writing: A longitudinal study. Journal of English for Academic Purposes, 64, 101255. 10.1016/j.jeap.2023.101255

    Gao, Y., An, Q. & Schunn, C. D. (2023). The bilateral benefits of providing and receiving peer feedback in academic writing across varying L2 proficiency. Studies in Educational Evaluation, 77, 101252. 10.1016/j.stueduc.2023.101252

    Wu, Y. & Schunn, C. D. (2023). Passive, active, and constructive engagement with peer feedback A revised model of learning from peer feedback. Contemporary Educational Psychology, 73, 102160. 10.1016/j.cedpsych.2023.102160

    Wu, Y. & Schunn, C. D. (2023). Assessor writing performance on peer feedback: Exploring the relation between assessor writing performance, problem identification accuracy, and helpfulness of peer feedback. Journal of Educational Psychology, 115(1), 118–142. 10.1037/edu0000768

    Tong, Y., Schunn, C. D., Wang, H. (2023). Why increasing the number of raters only helps sometimes: Reliability and validity of peer assessment across tasks of different complexity. Studies in Educational Evaluation, 76, 101233. 10.1016/j.stueduc.2022.101233

    Cui, Y., Schunn, C. D., & Gai, X. (2022). Peer feedback and teacher feedback: A comparative study of revision effectiveness in writing instruction for EFL learners. Higher Education Research & Development, 41(6), 1838- 1854. 10.1080/07294360.2021.1969541

    Zong, Z., Schunn, C. D., & Wang, Y. (2022). What makes students contribute more peer feedback? The role of withincourse experience with peer feedback. Assessment and Evaluation in Higher Education, 47(6), 972-983. 10.1080/02602938.2021.1968792

    Zong, Z., Schunn, C. D., & Wang, Y. (2022). Do experiences of interactional inequality predict lower depth of future student participation in peer review? Computers in Human Behavior, 127, 107056. 10.1016/j.chb.2021.107056

    Cui, Y., Schunn, C. D., Gai, X., Jiang, Y., & Wang, Z. (2021). Effects of trained peer vs. teacher feedback on EFL students’ writing performance, self-efficacy, and internalization of motivation. Frontiers in Psychology, 12, 6659 10.3389/fpsyg.2021.788474

    Zong, Z., Schunn, C. D., & Wang, Y. (2021). Learning to improve the quality peer feedback through experience with peer feedback. Assessment and Evaluation in Higher Education, 46(6), 973-992. 10.1080/02602938.2020.1833179

    Zong, Z., Schunn, C. D., & Wang, Y. (2021). What aspects of online peer feedback robustly predict growth in students’ task performance? Computers in Human Behavior, 124, 106924. 10.1016/j.chb.2021.106924

    Zong, Z., Wang, Y. & Schunn, C. D. (2021). Why students want to provide feedback to their peers: Drivers of feedback quantity and variation by type of course. Journal of Psychology in Africa, 31(4), 336-343. 10.1080/14330237.2021.1952726

    Wu, Y. & Schunn, C. D. (2021). From plans to actual implementation: A process model for why feedback features influence feedback implementation. Instructional Science, 49(3), 365–394. 10.1007/s11251-021-09546-5

    Wu, Y. & Schunn, C. D. (2021). The effects of providing and receiving peer feedback on writing performance and learning of secondary school students. American Educational Research Journal, 58(3), 492-526. 10.3102/0002831220945266

    Xiong, Y. & Schunn, C. D. (2021). Reviewer, Essay, and Reviewing Process Characteristics that Predict Errors in Webbased Peer Review. Computers & Education, 166, 104146. 10.1016/j.compedu.2021.104146

    Zhang, F., Schunn, C. D., Li, W., & Long, M. (2020). Changes in the reliability and validity of peer assessment across the college years. Assessment and Evaluation in Higher Education, 45(8), 1073-1087. 10.1080/02602938.2020.1724260

    Wu, Y. & Schunn, C. D. (2020). When peers agree, do students listen? The central role of feedback quality and feedback frequency in determining uptake of feedback. Contemporary Educational Psychology, 62, 101897. 10.1016/j.cedpsych.2020.101897

    Wu, Y. & Schunn, C. D. (2020). From feedback to revisions: Effects of feedback features and perceptions. Contemporary Educational Psychology, 60, 101826. 10.1016/j.cedpsych.2019.101826

    Schunn, C. D., & Wu, Y. (2019). The learning science of multi-peer feedback for EFL students. Technology Enhanced Foreign Language Education, 189, 13-21.

    Gao, Y., Wang, Y. & Schunn, C. D. (2019). Implementation of peer feedback and its potential mediators in English writing. Technology Enhanced Foreign Language Education, 186(2), 17-24.

    Elizondo-Garcia, J., Schunn, C., & Gallardo, K. (2019). Quality of peer feedback in relation to instructional design: A comparative study in energy and sustainability MOOCs. International Journal of Instruction, 12(1), 1308-1470. 1694-609X

    Gao, Y., Schunn. C.D., & Yu, Q. (2018). The alignment of written peer feedback with draft problems and its impact on revision in peer assessment. Assessment and Evaluation in Higher Education, 44(2), 294-308. 10.1080/02602938.2018.1499075

    Patchan, M. M., Schunn, C.D., & Clark, R. J. (2018). Accountability in peer assessment: examining the effects of reviewing grades on peer ratings and peer feedback. Studies in Higher Education, 43(12), 2263-2278. 10.1080/03075079.2017.1320374

    Gao, Y., Zhang, F., Zhang, S., & Schunn. C.D. (2018). Effects of receiving peer feedback in English writing: A study based on Peerceptiv. Technology Enhanced Foreign Language Education, 180(2), 3-9,67.

    Zou, M., Schunn, C., Wang, Y., & Zhang, F. (2018). Student attitudes that predict participation in peer assessment. Assessment and Evaluation in Higher Education, 43(5), 800-811. 10.1080/02602938.2017.1409872

    Mandala, M., Schunn, C. D., Dow, S., Goldberg, M., Perlman, J., Clark, W., & Mena, I. (2018). Collaborative team peer review generation improves feedback quality and reviewer engagement. International Journal of Engineering Education, 34(4), 1299-1313.

    Cho, K., & Schunn, C. D. (2018). Finding an optimal balance between agreement and performance in an online reciprocal peer evaluation system. Studies in Educational Evaluation, 56, 94–101. 10.1016/j.stueduc.2017.12.001

    Zhang, F., Schunn, C. D., & Baikadi, A. (2017). Charting the routes to revision: An interplay of writing goals, peer comments, and self-reflections from peer review. Instructional Science, 45(5), 679-707. 10.1007/s11251-017-9420- 6

    Patchan, M. M., Schunn, C. D., & Correnti, R. (2016). The nature of feedback: how feedback features affect students' implementation rate and quality of revisions. Journal of Educational Psychology, 108(8), 1098-1120. 10.1037/edu0000103

    Patchan, M. M., & Schunn, C. D. (2016). Understanding the effects of receiving peer feedback for text revision: relations between author and reviewer ability. Journal of Writing Research, 8(2), 227-265. 10.17239/jowr2016.08.02.03

    Schunn, C. D., Godley, A. J., & DeMartino, S. (2016). The reliability and validity of peer review of writing in high school AP English classes. Journal of Adolescent & Adult Literacy, 60(1), 13–23. 10.1002/jaal.525

    Schunn, C. D. (2016). Writing to learn and learning to write through SWoRD. In S.A. Crossley & D.S. McNamara (Eds.), Adaptive Educational Technologies for Literacy Instruction. NY: Taylor & Francis, Routledge.

    Patchan, M. M., & Schunn, C. D. (2015). Understanding the benefits of providing peer feedback: How students respond to peers' texts of varying quality. Instructional Science, 43(5), 591-614. 10.1007/s11251-015-9353-x

    Abramovich, S., Schunn, C. D., Correnti, R. J. (2013). The role of evaluative metadata in an online teacher resource exchange. Educational Technology Research & Development, 61, 863-883. 10.1007/s11423-013-9317-2

    Patchan, M. M., Hawk, B. H., Stevens, C. A., & Schunn, C. D. (2013). The effects of skill diversity on commenting and revisions. Instructional Science, 41(2), 381-405. 10.1007/s11251-012-9236-3

    Xiong, W., Litman, D., & Schunn, C. D. (2012). Improving research on and instructional quality of peer feedback through natural language processing. Journal of Writing Research, 4(2), 155-176. 10.17239/jowr-2012.04.02.3

    Goldin, I. M., Ashley, K. D., & Schunn, C. D. (2012). Redesigning educational peer review interactions using computer tools: An introduction. Journal of Writing Research, 4(2), 111-119. 10.17239/jowr-2012.04.02.1

    Abramovich, S., & Schunn, C. D. (2012). Studying teacher selection of resources in an ultra-large scale interactive system: Does metadata guide the way? Computers & Education, 58(1), 551-559. 10.1016/j.compedu.2011.09.001

    Kaufman, J. H., & Schunn, C. D. (2011). Students’ perceptions about peer assessment for writing: Their origin and impact on revision work. Instructional Science, 39(3), 387-406. 10.1007/s11251-010-9133-6

    Lee, C. J., & C. D. Schunn (2011). Social Biases and Solutions for Procedural Objectivity. Hypatia, 26(2), 352-373. 10.1111/j.1527-2001.2011.01178.x 17-Jul-23 9

    Patchan, M. M., Schunn, C.D., & Clark, R. J. (2011). Writing in natural sciences: Understanding the effects of different types of reviewers on the writing process. Journal of Writing Research, 2(3), 365-393. 10.17239/jowr-2011.02.03.4

    Lee, C. J., & C. D. Schunn (2010). Philosophy Journal Practices and Opportunities for Bias. American Philosophical Association Newsletter on Feminism and Philosophy, 10(1), 5-10.

    Cho, K., & Schunn, C. D. (2010). Developing writing skills through students giving instructional explanations. In M. K. Stein & L. Kucan (Eds.), Instructional Explanations in the Disciplines: Talk, Texts and Technology, p. 207-221. New York: Springer.

    Nelson, M. M., & Schunn, C. D. (2009). The nature of feedback: How different types of peer feedback affect writing performance. Instructional Science, 27(4), 375-401. 10.1007/s11251-008-9053-x

    Patchan, M. M., Charney, D., & Schunn, C. D. (2009). A validation study of students’ end comments: Comparing comments by students, a writing instructor, and a content instructor. Journal of Writing Research, 1(2), 124-152. 10.17239/jowr-2008.01.01.1

    Cho, K., Chung, T. R., King, W. R., & Schunn, C. D. (2008). Peer-based computer-supported knowledge refinement: An empirical investigation. Communications of the ACM, 51(3), 83-88. 10.1145/1325555.1325571

    Cho, K., & Schunn, C. D. (2007). Scaffolded writing and rewriting in the discipline: A web-based reciprocal peer review system. Computers and Education, 48(3), 409-426. 10.1016/j.compedu.2005.02.004

    Cho, K., Schunn, C. D., & Charney, D. (2006). Commenting on writing: Typology and perceived helpfulness of comments from novice peer reviewers and subject matter experts. Written Communication, 23(3), 260-294. 10.1177/0741088306289261

    Cho, K., Schunn, C. D., & Wilson, R. (2006). Validity and reliability of scaffolded peer assessment of writing from instructor and student perspectives. Journal of Educational Psychology, 98(4), 891-901. 10.1037/0022- 0663.98.4.891

     

    投入与学习 (科学S、技术T、艺术A、工程E、数学M)

    S  Dorph, R., Cannady, M., & Schunn, C. D. (2022). What drives visitor engagement in exhibits? The interaction between visitor activation profiles and exhibit features. Curator, 65(2), 399-416. 10.1111/cura.12324

    S   Malespina, A., Schunn, C., & Singh, C. (2022). Whose ability and growth matter: Gender, mindset and performance in physics. International Journal of STEM Education, 9, 28. 10.1186/s40594-022-00342-2

    S  Kalender, Z. Y., Marshman, E., Schunn, C., Nokes-Malach, T., & Singh, C. (2022). Framework for unpacking gendered mindsets in physics by students’ gender. Physical Review Physics Education Research, 18, 010116.

    S   Witherspoon, E., & Schunn, C. D. (2022). Sources of gender differences in competency beliefs and retention in an introductory pre-medical science course. Journal of Research Science in Teaching, 59(5), 695-719.10.1002/tea.21741

    S  Vincent-Ruz, P., & Schunn, C. D. (2021). Identity complexes and science identity in early secondary: Mono-topical or in combination with other topical identities. Research in Science Education, 51, 369-390. 10.1007/s11165-019-09882-0

    S  Blatt, L.R., Schunn, C. D., Votruba-Drzal, E., & Rottman, B. M. (2020). Variation in which key motivational and academic resources relate to academic performance disparities across introductory college courses. International Journal of STEM Education, 7, 58. 10.1186/s40594-020-00253-0

    E  Whitcomb, K. M., Kalender, Z. Y., Nokes-Malach, T. J., Schunn, C. D., & Singh, C. (2020). Comparison of self-efficacy and performance of engineering undergraduate women and men. International Journal of Engineering Education, 36(6), 1996–2014.

    T  Higashi, R. M., & Schunn, C. D. (2020). Perceived relevance of digital badges predicts longitudinal change in program engagement. Journal of Educational Psychology, 12(5), 1020–1041. 10.1037/edu0000401

    S  Kalender, Z. Y., Marshman, E., Schunn, C., Nokes-Malach, T., & Singh, C. (2020). Damage caused by women’s lower self-efficacy on physics learning. Physical Review Physics Education Research, 16(1), 010118. 10.1103/PhysRevPhysEducRes.16.010118

    S  Bodnar, K., Hofkens, T. L., Wang, M.-T., & Schunn, C. D. (2020). Science identity predicts science career aspiration across gender and race, but especially for boys. Journal of Gender, Science and Technology, 12(1), 32-45.

    S  Witherspoon, E., & Schunn, C. D. (2020). Locating and understanding the largest gender differences in pathways to science degrees. Science Education, 104(2), 144-163. 10.1002/sce.21557

    S  Kalender, Z. Y., Marshman, E., Nokes-Malach, T., Schunn, C. D., & Singh, C. (2020). Beliefs about competence: The story of self-efficacy, gender, and physics. In A. Murrell (Ed.), Diversity across disciplines: Research on people, policy, process and paradigm. Charlotte, NC: Information Age Publishing.

    S  Kalender, Z. Y., Marshman, E., Schunn, C., Nokes-Malach, T., & Singh, C. (2019). Why female science, technology, engineering, and mathematics majors do not identify with physics: They do not think others see them that way. Physical Review Physics Education Research, 15(2), 020148. 10.1103/PhysRevPhysEducRes.15.020148

    S  Kalender, Z. Y., Marshman, E., Schunn, C., Nokes-Malach, T., & Singh, C. (2019). Gendered patterns in the construction of physics identity from motivational factors? Physical Review Physics Education Research, 15(2), 020119. 10.1103/PhysRevPhysEducRes.15.020119

    S  Bonnette, R., Schunn, C. D., & Crowley, K. (2019). Falling in love and staying in love with science: Ongoing informal science experiences support fascination for all children. International Journal of Science Education, 41(12), 1626-1643. 10.1080/09500693.2019.1623431

    S  Witherspoon, E., Vincent-Ruz, P., & Schunn, C. D. (2019). When making the grade isn't enough: The gendered nature of pre-med science course attrition. Educational Researcher, 48(4), 193-204. 10.3102/0013189X19840331

    S  Marshman, E., Kalender, Z. Y., Nokes-Malach, T., Schunn, C., & Singh, C. (2018). Female students with A’s have similar physics self-efficacy as male students with C’s in introductory courses: A cause for alarm? Physical Review Physics Education Research, 14, 020123. 10.1103/PhysRevPhysEducRes.14.020123

    S  Vincent-Ruz, P., & Schunn, C. D. (2018). The nature of science identity and its role as driver of student choices. International Journal of STEM Education, 5, 48. 10.1186/s40594-018-0140-5

    S  Liu, A. S., & Schunn, C. D. (2018). The effects of school-related and home-related optional science experiences on science attitudes and knowledge. Journal of Educational Psychology, 110(6), 798-810. 10.1037/edu0000251

    S  Dorph, R., Bathgate, M.E., Schunn, C. D., & Cannady, M. (2018). When I grow up: The relationship of science learning activation to STEM career preference. International Journal of Science Education, 40(9), 1034-1057. 10.1080/09500693.2017.1360532

    S  Vincent Ruz, P., Grabowski, J., & Schunn, C. (2018). The impact of early participation in undergraduate research experiences on multiple measures of pre-med path success. SPUR: Scholarship and Practice of Undergraduate Research, 1(3), 13-18. 10.18833/spur/1/3/12

    S  Vincent Ruz, P., Binning, K., Schunn, C. D., & Grabowski, J. (2018). The effect of math SAT on women’s chemistry competency beliefs. Chemistry Education Research and Practice, 1, 342-351. 10.1039/C7RP00137A17-Jul-23 11

    S  Ben-Eliyahu, A., Moore, D., Dorph, R., & Schunn, C. D. (2018). Investigating the multidimensionality of engagement: Affective, behavioral, and cognitive engagement in science across multiple days, activities, and contexts. Contemporary Educational Psychology, 53, 87-105. 10.1016/j.cedpsych.2018.01.002

    S  Marshman, E., Kalender, Z. Y., Schunn, C. D., Nokes-Malach, T., & Singh, C. (2018). A longitudinal analysis of underrepresented students’ motivational characteristics in introductory physics courses. Canadian Journal of Physics, 96(4), 391-405. 10.1139/cjp-2017-0185

    -- Dorph, R. & Schunn, C.D. (2018). Activating Jewish learners: Positioning youth for persistent success in Jewish learning and living. In J. Levisohn and J. Kress (Eds.), Advancing the Learning Agenda in Jewish Education. Brighton, MA. Academic Studies Press.

    T  Higashi, R. M., Schunn, C. D., & Flot, J. B. (2017). Different underlying motivations and abilities predict students’ versus teachers’ persistence in an online course. Educational Technology Research and Development, 65(6), 1471-1493. 10.1007/s11423-017-9528-z

    S  Bathgate, M. E., & Schunn, C. D. (2017). The psychological characteristics of experiences that influence science motivation and content knowledge. International Journal of Science Education, 17, 2402-2432. 10.1080/09500693.2017.1386807

    SA  Akiva, T., Schunn, C., & Louw, M. (2017). What drives attendance at informal learning activities?: A study of two art programs. Curator: The Museum Journal, 60(3), 351-364. 10.1111/cura.12206

    S  Vincent Ruz, P., & Schunn, C. D. (2017). The increasingly important role of science competency beliefs for science learning in girls. Journal of Research in Science Teaching, 54(6), 790–822. 10.1002/tea.21387

    S  Bathgate, M. E., & Schunn, C. D. (2017). Factors that deepen or attenuate decline of science utility value during the middle school years. Contemporary Educational Psychology, 49, 215–225. 10.1016/j.cedpsych.2017.02.005

    S  Dorph, R., Schunn, C. D., & Crowley, K. (2017). Crumpled molecules and edible plastic: science learning activation in out of school time. Afterschool Matters, 25, 18-28.

    All  Akiva, T., Kehoe, S., & Schunn, C. D. (2017). Are we ready for citywide learning? Examining the nature of within- and between-program pathways in a community-wide learning initiative. Journal of Community Psychology, 45(3), 413-425. 10.1002/jcop.21856

    S  Lin, P.-Y., & Schunn, C. D. (2016). The dimensions and impact of informal science learning experiences on middle schoolers’ attitudes and abilities in science. International Journal of Science Education, 38(17), 2551-2572. 10.1080/09500693.2016.1251631

    S  Bathgate, M. E., & Schunn, C. D. (2016). Disentangling intensity from breadth of science interest: What predicts learning behaviors? Instructional Science, 44(5), 423-440. 10.1007/s11251-016-9382-0

    S  Dorph, R., Cannady, M., & Schunn, C. D. (2016). How science learning activation enables success for youth in science learning. Electronic Journal of Science Education, 20(8).

    S  Sha, L., Schunn, C. D., Bathgate, M., & Ben-Eliyahu, A. (2016). Families support their children’s success in science learning by influencing interest and self-efficacy. Journal of Research in Science Teaching, 53(3), 450–472. 10.1002/tea.21251

    S  Sha, L., Schunn, C. D. & Bathgate, M. (2015). Measuring choice to participate in optional science learning experiences during early adolescence. Journal of Research in Science Teaching, 52(5), 686-709. 10.1002/tea.21210

    S  Bathgate, M., Schunn, C. D., Correnti, R. J. (2014). Children’s motivation towards science across contexts, manner-ofinteraction, and topic. Science Education, 98(2), 189–215. 10.1002/sce.21095

    M  Abramovich, S., Schunn, C. D., & Higashi, R. M. (2013). Are badges useful in education?: It depends upon the type of badge and learner expertise. Educational Technology Research & Development, 61(2), 217-232. 10.1007/s11423-013-9289-2

    A  Bathgate, M., Schunn, C. D. (2013). Exploring and encouraging metacognitive awareness    

    in novice music students. In M. Stakelum (Ed.), Developing the Musician, SEMPRE Studies in the Psychology of Music series. Ashgate.

    A  Bathgate, M., Sims-Knight, J., & Schunn, C. D. (2012). Thoughts on thinking: Engaging novice music students in metacognition. Applied Cognitive Psychology, 26(3), 403-409. 10.1002/acp.1842

     

    STEM学习

    T  Huang, Y., Brusilovsky, P., Guerra, J., Koedinger, K., & Schunn, C. D. (2023). Supporting skill integration in an intelligent tutoring system for code tracing. Journal of Computer Assisted Learning, 39(2), 477-500. 10.1111/jcal.12757

    M  Walsh, M. E., Witherspoon, E., Schunn, C. D., & Matsumura, L. C., (2023). Mental simulations to facilitate teacher learning of ambitious mathematics instruction in coaching interactions. International Journal of STEM Education, 10(9). 10.1186/s40594-023-00401-2

    S  Fischer, C., Witherspoon, E., Nguyen, H., Feng, Y., Fiorini, S., Vincent-Ruz, P., Mead, C., Bork, W. Matz, R., & Schunn, C. (2023). Advanced Placement course credit and undergraduate student success in gateway science courses. Journal of Research in Science Teaching, 60(2), 304-329. 10.1002/tea.21799

    S  Kiselyov, K., & Schunn C. D. (2022). Storytelling as a tool to enhance conceptual understanding in cell biology. Journal of Microbiology and Biology Education, 23(2), e00308-21.

    S  Miller-Cotto, D., & Schunn C. D. (2022). Mind the gap: How a large-scale course re-design in economics reduced performance gaps. The Journal of Experimental Education, 90(4), 783-796. 10.1080/00220973.2020.1805717

    M  Witherspoon, E. B, Ferrer, N. B., Correnti, R., Stein, M. K., & Schunn, C. D. (2021). Coaching that supports teachers’ learning to enact ambitious instruction. Instructional Science, 49, 877–898. 10.1007/s11251-021-09536-7

    S  Apedoe, X., S., Ellefson, M. R. & Schunn, C. D. (2021). Supporting conceptual change in chemistry through designbased learning: The heating/cooling system unit. In M. DeVries & I. Henze-Rietveld (Eds.), Design-Based Concept Learning in Science and Technology Education. Leiden, The Netherlands: Brill. doi: https://doi.org/10.1163/9789004450004_004

    S  Liu, A. S., & Schunn, C. D. (2020). Predicting pathways to optional summer science experiences by socioeconomic status and the impact on science attitudes and skills. International Journal of STEM Education, 7, 49. 10.1186/s40594-020-00247-y

    S  Drayton, B., Bernstein, D., Schunn, C. D., & McKenney, S. E. (2020). Consequences of curricular adaptation strategies for implementation at scale. Science Education, 104(6), 983-1007. 10.1002/sce.21595

    S  Vincent-Ruz, P., Meyer, T., Garrett-Roe, S. & Schunn, C. D. (2020). Short and long-term effects of POGIL in a large enrollment General Chemistry course. Journal of Chemical Education, 97(5), 1228-1238.10.1021/acs.jchemed.9b01052

    T  Hosseini, R., Akhuseyinoglu, K., Brusilovsky, P., Malmi, L., Pollari-Malmi K., Schunn, C. D., & Sirkiä, T. (2020). Improving engagement in program construction examples for learning python programming. International Journal of Artificial Intelligence in Education, 30 (2), 299-236. 10.1007/s40593-020-00197-0

    E  Whitcomb, K. M., Kalender, Z. Y., Nokes-Malach, T. J., Schunn, C. D., & Singh, C. (2020). Laying a foundation for success in engineering coursework: A predictive curriculum model. International Journal of Engineering Education, 36(4), 1340–1355.

    S  Cannady, M. A., Vincent-Ruz, P., Chung, J. M., & Schunn, C. D., (2019). Scientific sensemaking supports science content learning across disciplines and instructional contexts. Contemporary Educational Psychology, 59, 101802. 10.1016/j.cedpsych.2019.101802

    S  Tekkumru-Kisa, M., Schunn, C. D., Stein, M. K., & Reynolds, B. (2019). Change in thinking demands for students across the phases of a science task: An exploratory study. Research in Science Education, 49(3), 859-883. 10.1007/s11165-017-9645-z

    S  Tekkumru-Kisa, M., & Schunn, C. D. (2019). Integrating a space for teacher interaction into an educative curriculum: Design principles and teachers’ use of the iPlan tool. Technology, Pedagogy and Education, 28(2), 133-155. 10.1080/1475939X.2019.1595707

    M  Quintana, R., & Schunn, C. D. (2019). Who benefits from a foundational logic course? Effects on undergraduate course performance. Journal of Research on Educational Effectiveness, 12(2), 191-214. 10.1080/19345747.2018.1543372

    T  Huang, X., Wang, Y., Schunn, C. D., Zou, Y., & Ai, W. (2019). Redesigning flipped classrooms: A learning model and its effects on student perceptions. Higher Education, 78, 711–728. 10.1007/s10734-019-00366-8

    T  Witherspoon, E. & Schunn, C. D. (2019). Teachers’ goals predict computational thinking gains in robotics. Information and Learning Science, 120(5/6), 308-326. 10.1108/ILS-05-2018-0035

    S  Betancur, L., Rottman, B. M., Votruba-Drzal, E., & Schunn, C. D. (2019). Analytical assessment of course sequencing: The case of methodological courses in psychology. Journal of Educational Psychology, 111(1), 91-103.10.1037/edu0000269

    All  McKenney, S. E., & Schunn, C. D. (2018). How can educational research support practice at scale? Attending to educational designer needs. British Educational Research Journal, 44(6), 1084-1100. 10.1002/berj.3480

    T  Guerra, J., Schunn, C. D., Bull, S., Barria-Pineda, J., & Brusilovsky, P. (2018). Navigation support in complex open learner models: Assessing visual design alternatives. New Review of Hypermedia and Multimedia, 3, 160-192.10.1080/13614568.2018.1482375

    S  Betancur, L., Votruba-Drzal, E., & Schunn, C. D. (2018). Socioeconomic gaps in science achievement. International Journal of STEM Education, 5, 38. 10.1186/s40594-018-0132-5

    S  Pareja Roblin, N., Schunn, C., Bernstein, D., & McKenney, S. (2018). Exploring shifts in the characteristics of US government-funded science curriculum materials and their (unintended) consequences. Studies in Science Education, 54(1), 1-39. 10.1080/03057267.2018.1441842

    E  Mandala, M., Schunn, C. D., Dow, S., Goldberg, M., & Perlman, J. (2018). Uncovering the practices, challenges, and incentives for engineering design faculty. International Journal of Engineering Education, 34(4), 1314-1324.

    S  Schunn, C. D., Newcombe, N., Alfieri, L., Cromley, J., Massey, C., & Merlino, J. (2018). Using  principles of cognitive science to improve science learning in middle school: What works when and for whom? Applied Cognitive Psychology, 32, 225-240. 10.1002/acp.3398

    T  Witherspoon, E., Higashi, R., Schunn, C. D., Shoop, R. (2018). Attending to structural programming features predicts differences in learning and motivation in a virtual robotics programming curriculum. Journal of Computer Assisted Learning, 34(2), 115-128. 10.1111/jcal.12219

    S  Pareja Roblin, N., Schunn, C., & McKenney, S. (2018). What are critical features of science curriculum materials that impact student and teacher outcomes? Science Education, 102(2), 260-282. 10.1002/sce.21328

    ST  Malone, K. L., Schunn, C. D., & Schuchardt, A. (2018). Improving conceptual understanding and representation skills through Excel-based modeling. Journal of Science Education and Technology, 27(1), 30-44. 10.1007/s10956-017-9706-0

    E  Menekse, M., Higashi, R., Schunn, C., & Baehr, E. (2017). Exploring the role of robotics teams’ collaboration quality on team performance in a robotics tournament. Journal of Engineering Education, 106(4), 564-584. 10.1002/jee.20178

    S  Barstow, B., Fazio, L., Lippman, J., Falakmasir, M., Schunn, C., Ashley, K. (2017). The impacts of domain-general vs. domain-specific diagramming tools on writing. International Journal of Artificial Intelligence in Education, 27(4), 671-693. 10.1007/s40593-016-0130-z

    All  Cannady, M., Moore, D., Votruba-Drzal, E., Greenwald, E., Stites, R. & Schunn, C. (2017). How personal, behavioral, and environmental factors predict working in STEMM vs non-STEMM Middle-Skill Careers. International Journal of STEM Education, 4(1): 22. 10.1186/s40594-017-0079-y

    T  Witherspoon, B., Higashi, R. M., Schunn, C. D., Baehr, E. C., Shoop, R. (2017). Developing computational thinking through a virtual robotics programming curriculum. ACM Transactions on Computing Education, 18(1). 10.1145/3104982

    SM  Schuchardt, A., Tekkumru-Kisa, M., Schunn, C. D., Stein, M. K., & Reynolds, B. (2017). How much professional development is needed with educative curriculum materials? It depends upon the intended student learning outcomes. Science Education, 101(6), 1015–1033. 10.1002/sce.21302

    S  Barstow, B., Fazio, L., Schunn, C. D., & Ashley, K. (2017). Experimental evidence for diagramming benefits in science writing. Instructional Science, 45(5), 537-556. 10.1007/s11251-017-9415-3

    M  Liu, A.S., & Schunn, C. D. (2017). Applying math onto mechanisms: mechanistic knowledge is associated with the use of formal mathematical strategies. Cognitive Research: Principles and Implications, 2(6). 10.1186/s41235-016-0044-1

    All  Schunn, C. D. (2017). Building from in vivo research to the future of research on relational thinking and learning. Educational Psychology Review, 29(1), 97-104. 10.1007/s10648-016-9384-0

    All  Nye, B., Mitros, P., Schunn, C., Foltz, P., & Gašević D. (2017). Why assess? The role of assessment in learning science & society. In R. A. Sottilare, A. Graesser, X. Hu, & G. Goodwin (Eds.), Design Recommendations for Intelligent Tutoring Systems: Volume 5 - Domain Modeling. Orlando, FL: U.S. Army Research Laboratory.

    T  Higashi, R., M., Schunn, C. D., Nguyen, V. H., & Ososky, S. J. (2017). Coordinating evidence   across learning modules using digital badges. In R. A. Sottilare, A. Graesser, X. Hu, & G.  Goodwin (Eds.), Design Recommendations for Intelligent Tutoring Systems: Volume 5 - Domain Modeling. Orlando, FL: U.S. Army Research Laboratory.

    E  Cox, C., Apedoe, X., Silk, E., & Schunn, C. D. (2017). Analyzing materials in order to find design opportunities for the classroom. In S. Goldman & Z. Kabayadondo (Eds.), Taking Design Thinking to School, pp. 204-220. New York: Routledge.

    T  Witherspoon, E. B., Schunn, C. D., Higashi, R. M., & Baehr, E. C. (2016). Gender, interest and prior experience shape opportunities to learn programming in robotics competitions. International Journal of STEM Education, 3(18). 10.1186/s40594-016-0052-1

    S  Cromley, J. M., Weisberg, S. M., Dai, T., Newcombe, N. S., Schunn, C. D., Massey, C., Merlino, F. J. (2016). Improving middle school science learning using diagrammatic reasoning. Science Education, 100(6), 1184-1213.10.1002/sce.21241

    SEM  Cox, C., Reynolds, B., Schuchardt, A., & Schunn, C. D. (2016). Using mathematics and engineering to solve problems in secondary level biology. Journal of STEM Education: Innovations and Research, 17(1), 22-30.17-Jul-23 14

    STM  Iriti, J., Bickel, W., Schunn, C., & Stein, M. K. (2016). Maximizing research and development resources: Identifying and testing “load-bearing conditions” for educational technology innovations. Educational Technology Research & Development, 64, 245-262. 10.1007/s11423-015-9409-2

    SM  Schuchardt, A., & Schunn, C. D. (2016). Modeling scientific processes with mathematics equations enhances student qualitative conceptual understanding and quantitative problem solving. Science Education, 100(2), 290–320. 10.1002/sce.21198

    S  Crowell, A. J., & Schunn, C. D. (2016). Unpacking the relationship between science education and applied scientific literacy. Research in Science Education, 46(1), 129-140. 10.1007/s11165-015-9462-1

    SM  Cox, C., Reynolds, B., Schuchardt, A., & Schunn, C. D., (2016). How do secondary level biology teachers make sense of using mathematics in design-based lessons about a biological process? In L. Annetta & J. Minogue (Eds.), Connecting Science and Engineering Practices in Meaningful Ways (pp. 339-372). Heidelberg: Springer.

    S   Bathgate, M.E., Crowell, A.J., Cannady, M., Dorph, R. & Schunn, C.D. (2015). The learning benefits of being willing and able to engage in scientific argumentation. International Journal of Science Education, 37(10), 1590-1612. 10.1080/09500693.2015.1045958

    S  Peffer, M. E., Beckler, M. L., Schunn, C. D., Renken, M., & Revak, A. (2015). Science classroom inquiry (SCI) simulations: A novel method to scaffold science learning. PLOS ONE, 10(3), e0120638. 10.1371/journal.pone.0120638

    S  Tekkumru-Kisa, M., Stein, M. K., & Schunn, C. D. (2015). A framework for analyzing cognitive demand and contentpractices integration: Task analysis guide in science. Journal of Research in Science Teaching, 52(5), 659-685. 10.1002/tea.21208

    M  Kessler, A., Stein, M. K., & Schunn, C. (2015). Cognitive demand of model tracing tutor tasks: Conceptualizing and predicting how deeply students engage. Technology, Knowledge and Learning, 20(3), 317-337. 10.1007/s10758-015-9248-6

    M  Alfieri, L., Higashi, R., Shoop, R., & Schunn, C. D. (2015). Case studies of a robot-based game to shape interests and hone proportional reasoning skills. International Journal of STEM Education, 2:4. 10.1186/s40594-015-0017-9

    S  Crowell, A. J., & Schunn, C. D. (2014). The context-specificity of scientifically literate action: Key barriers and facilitators across contexts and contents. Public Understanding of Science, 23(6), 718-733.10.1177/0963662512469780

    T  Liu, A., Schunn, C. D., Flot, J., & Shoop, R. (2013). The role of physicality in rich programming environments. Computer Science Education, 23(4), 315-331. 10.1080/08993408.2013.847165

    E  Apedoe, X. & Schunn, C. D. (2013). Strategies for Success: Uncovering what makes students successful in design and learning. Instructional science, 41(4), 773-791. 10.1007/s11251-012-9251-4

    T  Liu, A., Newsome, J., Schunn, C. D., & Shoop, R. (2013). Kids learning to program in about half the time. Tech Directions, March, 16-19.

    SE  Apedoe, X., Ellefson, M. E., & Schunn, C. D. (2012). Learning together while designing: Does group size make a difference? Journal of Science Education and Technology, 21(1), 83-94. 10.1007/s10956-011-9284-5

    T  Flot, J., Schunn, C., Lui, A., Shoop, R. (2012). Learning how to program via robot simulation. Robot Magazine, 37, 68-70.

    SE  Schunn, C. D., Silk, E. M., & Apedoe, X. S. (2012). Engineering in and for science education. In S. M. Carver and J. Shrager (Eds.), The journey from child to scientist: Integrating cognitive development and the education sciences. Washington, DC: APA Press.

    E  Schunn, C.D., & Silk, E. M. (2011). Learning theories for engineering technology and engineering education. In M. Barak and M. Hacker (Eds.), Fostering Human Development through Engineering and Technology Education (p. 3–18). Sense Publishers.

    S  Singh, C., Moin, L., & Schunn, C. D. (2010). Introduction to physics teaching for science and engineering undergraduates. Journal of Physics Teacher Education Online, 5(3), 3-10.

    S  Singh, C., & Schunn, C. D. (2009). Connecting three pivotal concepts in K-12 science state standards and maps of conceptual growth to research in physics education. Journal of Physics Teacher Education Online, 5(2), 16-28.

    SE  Doppelt, Y., Schunn, C. D., Silk, E. M., Mehalik, M., Reynolds, B., & Ward, E. (2009). Evaluating the impact of a facilitated learning community approach to professional development on teacher practice and student achievement. Research in Science & Technological Education, 27(3), 339-354. 10.1080/02635140903166026

    E  Reynolds, B., Mehalik, M. M., Lovell, M. R., & Schunn, C. D. (2009). Increasing student awareness of and interest in engineering as a career option through design-based learning. International Journal of Engineering Education. 25(1), 788-798.

    SE  Silk, E. M., Schunn, C. D., & Strand-Cary, M. (2009). The impact of an engineering design curriculum on science reasoning in an urban setting. Journal of Science Education and Technology, 18(3), 209-223. 10.1007/s10956-009-9144-8

    T  Steinberg, D., Patchan, M., Schunn, C. D., Landis, A. (2009). Determining adequate information for green building occupant training materials. Journal of Green Building, 4(3), 143-150. 2-s2.0-77953354391

    T  Steinberg, D., Patchan, M., Schunn, C. D., Landis, A. (2009). Developing a focus for green  building occupant training materials. Journal of Green Building, 4(2), 175–184. 10.3992/jgb.4.2.175

    E  Schunn, C. D. (2009). How kids learn engineering: The cognitive science perspective. The Bridge, 39(3), 32-37.

    TM  Silk, E. M., Schunn, C. D., & Shoop, R. (2009). Synchronized robot dancing: Motivating efficiency and meaning in problem solving with robotics. Robot Magazine, 17, 42-45.

    TM  Silk, E. M., Higashi, R., Shoop, R., Schunn, C. D. (2010). Designing technology activities that teach mathematics. The Technology Teacher, 69(4), 21-27.

    SE  Apedoe, X., Reynolds, B., Ellefson, M. R., & Schunn, C. D. (2008). Bringing engineering design into high school science classrooms: The heating/cooling unit. Journal of Science Education and Technology, 17(5), 454–465. 10.1007/s10956-008-9114-6

    SE  Doppelt, Y. & Schunn, C. D. (2008). Identifying students' perceptions of the important classroom features affecting learning aspects of a design based learning environment? Learning Environments Research, 11(3), 195-209.10.1007/s10984-008-9047-2

    SE  Doppelt, Y., Mehalik, M. M., Schunn, C. D., & Krysinski, D. (2008). Engagement and achievements in design-based learning. Journal of Technology Education, 19(2), 22-39. 10.21061/jte.v10i2.a.2

    SE  Ellefson, M., Brinker, R., Vernacchio, V., & Schunn, C. D. (2008). Design-based learning for biology: Genetic engineering experience improves understanding of gene expression. Biochemistry and Molecular Biology Education, 36, 292-298. 10.1002/bmb.20203

    SE  Mehalik, M. M., Doppelt, Y., & Schunn, C. D. (2008). Middle-school science through design-based learning versus scripted inquiry: Better overall science concept learning and equity gap reduction. Journal of Engineering Education, 97(1), 71-85. 10.1002/j.2168-9830.2008.tb00955.x

    S  Schunn, C. D. (2008). Engineering educational design. Educational Designer, 1. http://www.educationaldesigner.org/ed/volume1/issue1/article2/index.htm

    S  Moin, L., Dorfield, J., & Schunn, C. D. (2005). Where can we find future K-12 science & math teachers? A search by academic year, discipline, and achievement level. Science Education, 89(6), 980-1006. 10.1002/sce.20088

    S  Crowley, K., Schunn, C. D., & Okada, T. (2001). An introduction to Designing for Science. In K. Crowley, C.D. Schunn, & T. Okada (Eds.), Designing for Science: Implications from Professional, Instructional, and Everyday Science. Mahwah, NJ: Erlbaum.

    S  Schunn, C. D., & Anderson, J. R. (2001). Science education in universities: Explorations of what, when, and how. In K. Crowley, C.D. Schunn, & T. Okada (Eds.), Designing for Science: Implications from Professional, Instructional, and Everyday Science. Mahwah, NJ: Erlbaum

    STEM推理

    E  Chan, J., & Schunn, C. D. (In press). The importance of separating appropriateness into impact and feasibility for the psychology of creativity. Creativity Research Journal. 10.1080/10400419.2023.2191919

    SE  Paletz, S. B. F., & Schunn, C. D. (2018). Micro-conflict coding scheme. In E. Brauner, M Boos, & M. Kolbe (Eds.), Cambridge Handbook of Group Interaction Analysis. Cambridge University Press, Cambridge.

    S  Aviña, G. E., Schunn, C. D., Silva, A. R., Bauer, T. L., Crabtree, G. W., Johnson, C. M., Odumosu, T., Picraux, S. T., Sawyer, R. K., Schneider, R. P., Sun, R., Feist, G. J., Narayanamurti, V., & Tsao J. Y. (2018). The art of research: A divergent/ convergent thinking framework and opportunities for science-based approaches. In E. Subrahmanian,

    T.  Odumosu. & J. Y. Tsao (Eds.), Engineering a Better Future: Interplay between Engineering, Social Sciences and Innovation. Springer. 10.1007/978-3-319-91134-2_14

    E  Goncher, A., Chan, J., & Schunn, C. D. (2017). Measuring design innovation for project-based design assessment: considerations of robustness and efficiency. Bitacora Urbano Territorial, 27(4), 19-30. 10.15446/bitacora.v27n4Esp.68959

    E  Egan, P., Moore, J., Ehrlicher, A., Weitz, D., Schunn, C., Cagan, J., & LeDuc, P. (2017). Robust mechanobiological behavior emerges in heterogenous myosin systems. Proceedings of the National Academy of Sciences, 114(39), E8147–E8154. 10.1073/pnas.1713219114

    E  Paletz, S., Chan, J., & Schunn, C. D. (2017). Dynamics of micro-conflicts and uncertainty in successful and unsuccessful design teams. Design Studies, 50, 39-69. 10.1016/j.destud.2017.02.002

    E  Chan, J., & Schunn, C. D. (2017). A computational linguistic approach to modelling the dynamics of design processes. In B. T. Christensen & S. J. J. Abildgaard (Eds.), Analysing design thinking: Studies of cross-cultural co-creation (DTRS-11). Taylor & Francis/Belkema-CRC Press.

    E  Egan, P., Chiu, F., Cagan, J., Schunn, C., LeDuc, P., Moore, J. (2016). The D3 design methodology: Bridging science and design for bio-based product development. Journal of Mechanical Design, 138, 081101-1-13. 10.1115/1.4033751

    S  Paletz, S., Chan, J., & Schunn, C. D. (2016). Uncovering uncertainty through disagreement. Applied Cognitive Psychology, 30(3), 387-400. 10.1002/acp.3213

    E  Fu, K., & Schunn, C. D. (2016). Open innovation through strategic design-by-analogy. In A. Markman & H. Naquin (Eds.), Open Innovation: Academic and Practical Perspectives on the Journey from Idea to Market. Oxford University Press.

    E  Egan, P., Schunn, C., Cagan, J., & LeDuc, P. (2015). Improving understanding and design proficiency of complex multi-level biosystems through animation and parametric relationships support. Design Science, 1(1), e3. doi:10.1017/dsj.2015.3

    E  Chan, J., & Schunn, C. D. (2015). The importance of iteration in creative conceptual combination. Cognition, 145, 104–115. 10.1016/j.cognition.2015.08.008

    E  Egan, P., Schunn, C. D., Cagan, J., & LeDuc, P. (2015). Emergent systems energy laws for predicting myosin ensemble processivity. PLOS Computational Biology 11(4): e1004177. 10.1371/journal.pcbi.1004177

    E  Egan, P., Cagan, J., Schunn, C. D., & LeDuc, P. (2015). Synergistic human-agent methods for deriving effective search strategies: The case of nanoscale design. Research In Engineering Design, 26(2), 145-169. 10.1007/s00163-015-0190-3

    E  Chan, J., Dow, S. P., & Schunn, C. D. (2015). Do the best design ideas (really) come from conceptually distant sources of inspiration? Design Studies, 36, 31-58. 10.1016/j.destud.2014.08.001

    E  Chan, J., & Schunn, C. D. (2015). The impact of analogies on creative concept generation:  Lessons from an in vivo study in engineering design. Cognitive Science, 39(1), 126-155.  10.1111/cogs.12127

    E  Fu, K., Chan, J., Schunn, C. D., & Cagan, J. (2013). Expert representation of design repository space: A comparison to and validation of algorithmic output. Design Studies, 34(6), 729-762. 10.1016/j.destud.2013.06.002

    S  Paletz, S. B. F., Kim, K., Schunn, C. D., Tollinger, I., & Vera, A. (2013). The development of adaptive expertise, routine expertise, and novelty in a large research team. Applied Cognitive Psychology, 27(4), 415–428.10.1002/acp.2928

    E  Egan, P. F., Cagan, J. C., Schunn, C. D., & LeDuc, P. R. (2013). Design of complex biologically-based nanoscale systems using multi-agent simulations and structure-behavior-function representations. Journal of Mechanical Design, 135(6), 061005. 10.1115/1.4024227

    E  Fu, K., Chan, J., Cagan, J., Kotovsky, K., Schunn, C., & Wood, K. (2013). The meaning of “near” and “far”: The impact of structuring design databases and the effect of distance of analogy on design output. Journal of Mechanical Design, 135(2), 021007. 10.1115/1.4023158

    S  Paletz, S. B. F., Schunn, C. D., & Kim, K. (2013). The interplay of conflict and analogy in multidisciplinary teams. Cognition, 126(1), 1-19. 10.1016/j.cognition.2012.07.020

    S  Chan, J., Paletz, S., & Schunn, C. D. (2012). Analogy as a strategy for supporting complex problem solving under uncertainty. Memory & Cognition, 40, 1352-1365. 10.3758/s13421-012-0227-z17-Jul-23 17

    E  Jang, J., & Schunn, C. D. (2012). Physical design tools support and hinder innovative engineering design. Journal of Mechanical Design, 134(4), 041001. 10.1115/1.4005651

    S  Schunn, C. D. & Trafton, J. G. (2012). The psychology of uncertainty in scientific data analysis. In G. Feist & M. Gorman (Eds.), Handbook in the Psychology of Science. New York: Springer.

    S  Paletz, S. B. F. & Schunn, C. D. (2012). Digging into implicit/explicit states and processes: The case of cognitive/social process interaction in scientific groups. In R. Proctor and J. Capaldi (Eds.), Psychology of Science: Implicit and Explicit Processes. Oxford University Press.

    S  Paletz, S. B. F., Schunn, C. D., & Kim, K. (2011). Intragroup conflict under the microscope: micro-conflicts in naturalistic team discussions. Negotiation and Conflict Management Research, 4, 314-351. 10.1111/j.1750-4716.2011.00085.x

    E  Chan, J., Fu, K., Schunn, C. D., Cagan, J., Wood, K., & Kotovsky, K. (2011). On the benefits and pitfalls of analogies for innovative design: Ideation performance based on analogical distance, commonness, and modality of examples. Journal of Mechanical Design, 133, 081004-1-11. 10.1115/1.4004396

    S  Paletz, S. B. F., & Schunn, C. D. (2011). Assessing group level participation in fluid teams: Testing a new metric. Behavior Research Methods, 43(2), 522–536. 10.3758/s13428-011-0070-3.

    E  Linsey, J., Tseng, I., Fu, K., Cagan, J., Wood, K., & Schunn, C. D. (2010). A study of design fixation, its mitigation and perception in engineering design faculty. Journal of Mechanical Design, 132(4), 041003-1-12. 10.1115/1.4001110

    S  Paletz, S. B. F., & Schunn, C. (2010). A social-cognitive framework of multidisciplinary  team innovation. Topics in Cognitive Science, 2, 73-95. 10.1111/j.1756-8765.2009.01029.x

    SE  Schunn, C. D. (2010). From uncertainly exact to certainly vague: Epistemic uncertainty and approximation in science and engineering problem solving. In B. Ross (Ed.), Psychology of Learning and Motivation (Vol. 53), p. 227-252. Burlington: Academic Press.

    E  Christensen, B. T., & Schunn, C. D. (2009). The role and impact of mental simulation in design. Applied Cognitive Psychology, 23, 327-344. 10.1002/acp.1464

    S  Trickett, S. B., Trafton, J. G., & Schunn, C. D. (2009). How do scientists respond to anomalies? Different strategies used in basic and applied science. Topics in Cognitive Science, 1(4), 711-729. 10.1111/j.1756-8765.2009.01036.x

    E  Christensen, B. T., & Schunn, C. D. (2009). Setting a limit to randomness [or: ‘Putting blinkers on a blind man’]: Providing cognitive support for creative processes with environmental cues. In K. Wood & A. Markman (Eds.), Tools for Innovation. Oxford University Press.

    E  Christensen, B. T., & Schunn, C. D. (2007). The relationship of analogical distance to analogical function and preinventive structure: The case of engineering design. Memory & Cognition, 35(1), 29-38. 10.3758/BF03195939

    S  Schunn, C. D., Saner, L. D., Kirschenbaum, S. K., Trafton, J. G., & Littleton, E. B. (2007). Complex visual data analysis, uncertainty, and representation. In M. C. Lovett & P. Shah (Eds.), Thinking with Data. Mahwah, NJ: Erlbaum.

    S  Trickett, S. B., Trafton, J. G., & Saner, L. D., & Schunn, C. D. (2007). "I don't know what is going on there": The use of spatial transformations to deal with and resolve uncertainty in complex visualizations. In M. C. Lovett & P. Shah (Eds.), Thinking with Data. Mahwah, NJ: Erlbaum.

    E  Mehalik, M. M., & Schunn, C. D. (2006). What constitutes good design? A review of empirical studies of the design process. International Journal of Engineering Education, 22(3), 519-532.

    SE  Trafton, J. G., Trickett, S. B., Stitzlein, C. A., Saner, L. D., Schunn, C. D., & Kirschenbaum, S. S. (2006). The relationship between spatial transformations and iconic gestures. Spatial Cognition & Computation, 6(1), 1-29.10.1207/s15427633scc0601_1

    S  Schunn, C. D., Crowley, K., & Okada, T. (2005). Cognitive Science: Interdisciplinarity now and then. In S. J. Derry, C. D. Schunn, & M. A. Gernsbacher (Eds.), Interdisciplinary Collaboration: An Emerging Cognitive Science (pp. 287–315). Mahwah, NJ: Erlbaum.

    S  Trickett, S. B., Trafton, J. G., & Schunn, C. D. (2005). Puzzles and peculiarities: How scientists attend to and process anomalies during data analysis. In M. E. Gorman, R. D. Tweney, D. Gooding, & A. Kincannon (Eds.), Scientific and technological thinking (pp. 97-118). Mahwah, NJ: LEA.

    S  Schunn, C. D., Crowley, K., & Okada, T. (2002). What makes collaborations across a distance succeed?: The case of the cognitive science community. In P. Hinds & S. Kiesler, Distributed work. Cambridge, MA: MIT Press.

    S  Schunn, C. D., Crowley, K., & Okada, T. (2000). Cognitive Science: Interdisciplinarity now and then. In K. Ueda & T. Okada (Eds.), In search of collaborative cognition: Cognitive science on creative collaboration. Tokyo: Kyoritsu Shuppan. (In Japanese)

    S  Schunn, C. D., & Klahr, D. (2000). Discovery processes in a more complex task. In D. Klahr  (Ed.), Exploring science: The cognition and development of discovery processes (pp. 161-199). Cambridge, MA: MIT Press.

    S  Schunn, C. D., & Anderson, J. R. (1999). The generality/specificity of expertise in scientific reasoning. Cognitive Science, 23(3), 337-370. 10.1207/s15516709cog2303_317-Jul-23 18

    S  Schunn, C. D., Crowley, K., & Okada, T. (1998). The growth of multidisciplinarity in the Cognitive Science Society. Cognitive Science, 22(1), 107-130. 10.1207/s15516709cog2201_4

    S  Schunn, C. D., & Anderson, J. R. (1998). Scientific Discovery. In J. R. Anderson & C. Lebière (Eds.), Atomic Components of Thought (pp. 385-427). Mahwah, NJ: Erlbaum.

    S  Schunn, C. D., & Dunbar, K. (1996). Priming, analogy, and awareness in complex reasoning. Memory & Cognition, 24(3), 271-284. 10.3758/BF03213292

     

     

     




下一篇:酒井 顺一郎

地址:中国吉林省长春市净月旅游开发区东北师范大学净月校区
  传真:(0431)84514547   邮编: 130117  E-mail: lryx@nenu.edu.cn